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Numerical models describing the formation of equilibrium "Belt"-type plasma configurations 
using direct discharge are developed. The magnetobaric characteristics p(~I!) of these 
configurations are determined. The calculation results are in agreement with ezperimental data. 

Introduct ion.  As is known, in the traditional plasma gaps studied in connection with the problem of 
controlled thermonuclear fusion, magnetic fields are produced using only coils resting on ground. From the 
practical viewpoint, of greatest interest are gaps in which the magnetic field in the plasma volume is absent 
or it has low intensity compared to the field in the magnetic barrier around the plasma [1]. However, slit-free 
magnetic configurations of this type cannot be produced using coils resting on ground. At the same time, the 
required configurations can be easily created by means of current-carrying conductors immersed in a plasma. 
In [1], such gaps are called "galatheas" and the conductors immersed in the plasma are called "myxines." 

It should be noted that although galathea configurations have apparent advantages from the viewpoint 
of plasma confinement and very perfect experimental facilities have been designed, studies of these plasma 
configurations are at an early stage. The main reason why galatheas have not been adequately studied is the 
generally accepted opinion that galatheas are not promising as the basis of commercial thermonuclear reactors 
because of great technological difficulties. However, this opinion is wrong [1, 2]. 

Recently, a number of experimental and theoretical studies of galatheas have been performed (see [1-13] 
and the references in them). Thus, galatheas have been studied experimentally by the group of A. G. Frank 
on a setup galathea of the "Belt" type. A scheme of this gap was proposed by Morozov and Frank [3]. The gap 
is a toroidal quadrupole formed by two myxines between which an azimuthal current flows in a plasma. At 
present, straight "Belt" configurations have been studied experimentally in the regime of electrode discharge 
[3, 4]. In this case, the gap is a quartz chamber 100 cm long and 18 cm in diameter. The myxines are metal 
rods 95 cm long and 2 cm in diameter coated with an insulating layer 0.2 cm thick; the axes of the myxines 
are at a distance of a = • cm from the axis of the chamber, and the electric currents in them have identical 
directions and magnitudes. The reverse current lead for the myxine current is also made in the form of two 
conductors that are parallel to the axis and located outside the vacuum chamber at a distance y0 = 4-11.25 
cm from its axis. The electric currents in the outside conductors (hold elements) change the magnetic-field 
structure and decrease the force of attraction of the myxines. The gas (Ar or He) filling the chamber is 
previously ionized by a powerful ultraviolet lamp. Two plate grid electrodes are introduced into the chamber 
from both sides. A pulse voltage from a capacitor is applied to them, leading to further ionization of the gas 
and causing a current to flow in the plasma [4]. 

Proceeding to a discussion of the theoretical papers devoted to galatheas, we first consider stationary 
models for calculating static configurations. Morozov and Frank [3] constructed very general solutions of 
the Grad-Shafranov equation for the magnetobaric characteristics p(k~) in the form of linear and quadratic 
splines. Morozov and Murzina [5] examined the equilibrium configurations of galatheas assuming that the 
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dependence p(g2) is described by a linear spline. Savel'ev [6] constructed equilibrium configurations using 
conformal mappings for the case of infinitely thin "plasma-field" transition layers. 

In [7, 8], the equilibrium plasma configurations in a magnetic field are calculated using the equations of 
stationary one-fluid magnetohydrodynamics. Brushlinskii et al. [7] solved this system of equations numerically 
by the finite-difference method in studying the plasma configurations in a galathea stellarator. The model 
proposed by Maikov et al. [8] makes it possible to take into account not only the plasma equilibrium but 
also the equilibrium of myxines in a magnetic field. Morozov [9] used the equations of stationary two-fluid 
magnetohydrodynamics for analysis of plasma shells of myxines. 

The main disadvantage of the stationary approach is the a priori specification of the magnetobaric 
characteristic p(~), which is the plasma distribution between the magnetic surfaces. To obtain adequate 
information on this function and to study the corresponding magnetoplasma configurations and the dynamics 
of their formation, it is necessary to use nonstationary MHD models. At present, development of these models 
is beginning. Thus, Brushlinskii et al. [10, 11] performed a numerical simulation of the formation of a "Belt" 
configuration in the regime of direct discharge. They used the following simplified model: the myxines were 
assumed to be penetrable for the plasma and the current in them was constant. Therefore, such calculations 
could explain the plasma dynamics in the initial stage of the process. These calculations also supported the 
presumable scheme of formation of the "Belt" configuration. Dudnikova et al. [12, 13] developed MHD models 
of the formation of the "Belt" configuration taking into account the impenetrability of myxines and using the 
equations of one-fluid magnetohydrodynamics to describe the plasma dynamics. The Poisson's equation for 
the vector potential of the magnetic field was solved inside the myxine volume. The myxine's field was joined 
in a continuous manner with the plasma field. This model is described in detail in Sec. 2. 

Numerical simulation plays an important role in solving the problem of galatheas. Indeed, even 
stationary models require invoking numerical methods to allow for the real geometry and design features 
of gaps. This is especially true for nonstationary models. In this connection, development of adequate 
mathematical models and effective numerical algorithms for implementing them remains very important. 
In the present paper, we propose two such models. A stationary model for a galathea gap of the "Belt" 
type is developed in Sec. 1. The algorithm for implementing this model is based on the finite-difference 
method. An MHD model for the "Belt" formation based on the equations of nonstationary one-fluid 
magnetohydrodynamics is developed in Sec. 2. Numerical implementation of this model is performed by 
a finite-difference method. 

1. S t a t i o n a r y  Mode l  of the  "Bel t"  Conf igura t ion .  The stationary model of the "Belt" 
configuration is based on the equations of stationary one-fluid magnetohydrodynamics: 

Vp = l ( j  pl x H ) ,  rot H = 4~'(j pl + jex), div H = 0. (1.1) 
c c 

Here jpl is the density of the current induced in the plasma, jex  is the density of the specified external current, 
p is the plasma pressure, and H is the magnetic-intensity vector. 

Problem (1.1) is studied in a two-dimensional formulation since the myxine current has only the z 
component and the length of the setup along the z axis is much greater than its transverse dimensions and, 
hence, the edge effects can be ignored. Taking into account the symmetry conditions, we consider only a 
quarter of the initial flow. On the symmetry axes for the magnetic-field intensity H ,  the plasma pressure p, 
and the plasma current density jp l  the  following boundary conditions are imposed: 

I [ oJPls 2 Op = O, = O. OH = O. -~n s2 -~n s~ On 

Here n is an outer normal to the boundary 5'2. In addition, for the field intensity, the absence of a field away 
= 0. At the walls of from the sources was specified (at a distance of about 10 radii of the chamber), H sl 

the vacuum chamber and on the myxine surface, the nonpenetration conditions were imposed. Because the 
problem is two-dimensional, it is convenient to replace the magnetic-field intensity by the vector potential 
A ( H  = rot A), which in this case has just one nonzero component A = (0, 0, k~) (following the tradition 
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adopted in the theory of the Grad-Shafranov equations A~ is denoted by ~). Then, system (1.1) takes the 
form 

4zr . dp 1 -10ql dp 1 . 10q) 
A kO =----3Z,c -7"ax = --JYc _'-4"-- --dy = - c  3p Oy ' (1.2) 

where jz = jpl + 'ex ?z �9 
The boundary conditions are given by 

II/[s1 =0, 0~-~n $2=0, 0~-nP $2=0, 0~----~ $2 = 0. (1.3) 

A distinguishing feature of the problem is the presence of a free boundary of the plasma. In this connection, 
system (1.2) should be supplemented by a closure condition from which the boundary of the plasma volume 
can be determined. As this condition, we can use the dependence p(q/), i.e., the magnetobaric characteristic. 
In the calculations, we used the linear magnetobaric characteristic 

= { 

and the quadratic characteristic [3, 5] 

= { 

0, �9 < q~a < 0, 
p0(1-q//k~.),  q/a <q) <q~., 
0, �9 >/g2, > 0 

0, �9 < ~a < 0, 
- < �9 < 

O, � 9  ~ ,  > O, 

(1.4) 

(1.5) 

where g/, is the stream-function value on the boundary between the plasma and the outer magnetic shell and 
kO1 is the current-function value on the boundary between the plasma and the magnetic shell of the myxines. 

The self-conjugation of the Laplacian in the Poisson's equation for the potential allows one to obtain 
the variational formulation of the finite-element method in the Ritz form: finding a solution of the Poisson's 
equation is equivalent to minimizing the functional 

I(v)  = f V T v v v  df~ - 2 f jzv d~ (1.6) 
n f~ 

on the class of functions v E H 1(~), where H01 (f~) is the space of functions that are defined in the space ~, 
have first-order derivatives,.and satisfy zeroth first boundary conditions (1.3) 

The relation jz = c(dp(~J)/dfft) allows one to obtain an analytic dependence for the plasma current 
from the known p(~). Thus, for the linear dependence (1.4) we have 

p0 (1.7) jz pl = -cko . ,  

and for the quadratic dependence (1.5), the current density in the region ~I/1 < ~I/ < kI/, is 

- 2c  po . jpl = ~-, (g/, - g/). (1.8) 

The simulation region was approximated by irregular triangular finite elements. Minimization of the 
discrete analog of functional (1.6) was reduced to solving a system of linear algebraic equations by the 
conjugate-gradient method adapted to matrix representation in a rarefied row format [14]. Because a feature 
of the problem is the presence of a free boundary of the plasma, whose position is constantly refined, an error 
arises that is due to the rough approximation of the plasma boundary by finite element edges. This required 
adapting the finite-element grid to the current location of the plasma-volume boundaries. The following 
numerical algorithm was developed: 

(1) specify the geometry of the simulation region and divide the region into finite elements 
(triangulation); 

(2) specify the coefficients p0, gt,, and g)l of the magnetobaric characteristic p(kO) and the current 
distribution jex in the myxines; 
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(3) determine the initial region occupied by the plasma (for example, the entire accessible region up 
to the walls of the chamber and myxines); 

(4) determine the initial distribution of the plasma current density jpl (for example, uniform or zero); 
(5) by minimizing the functional (1.6), determine the distribution of the vector potential g/; 
(6) determine the plasma region k~l ~ g/~< k~. in the vacuum chamber; 
(7) adapt the grid by aligning the edges of the triangles nearest to the plasma boundary with the 

isolines �9 = g/1 and �9 = g/,; 
(8) calculate the distributions of the plasma pressure p and the plasma current density jpl from formulas 

(1.4), (1.5) and (1.7), (1.8), respectively. 
(9) the conditions of termination of the iterative process is as follows: if the residual difference norm 

in two neighboring iterations is smaller than the specified accuracy c, the iterative process is terminated; 
otherwise, the iterative procedure is continued from item 5 taking into account the changed geometry of the 
plasma volume. 

Figure la and b shows the magnetic field lines for the cases of linear and quadratic magnetobaric 
characteristics, respectively. Curve 1 in Fig. 1 shows the boundary of the chamber, curve 2 shows the boundary 
of the plasma volume, and curve 3 shows the boundary of the myxine. 

2. N o n s t a t i o n a r y  M o d e l  of the  "Bel t"  Configurat ion The nonstationary model of the "Belt" 
configuration is based on the following equations of one-fluid magnetohydrodynamics: 

Op + div(pu) = 0, p -~" + (uV)u  = - V p -  [AA x rotA], (2.1) 
0t 

0_4 = [u x rotA] + vmAA, N + (uV)p = -3 ,pdivu + vm(AA) 2 + X(7 - 1)AT. 
Ot 

Here p is the plasma density, u is its mass average velocity, p and T are the gas-dynamic pressure and 
temperature of the plasma, respectively, A is the vector potential, um = c2/(47ro ~) is the magnetic viscosity, ~ 
is the plasma conductivity, and X is the thermal conductivity. Taking into account the experimental conditions 
of [4], we use the following characteristic parameters: 

- -  magnetic field H0 = 1 kG; 
- -  length/;  = 10 cm; 
- -  characteristic plasma concentration no = 1015 cm-3; 
- -  velocity V ~ ~- Ho/(47rpo) U2 ~- 3.5.106 cm/sec; 
- -  characteristic time to = L/V~ ~- 2.9- 10 -6 sec; 
- -  pressure p0 = H2/(8 ~r) ~- 4.104 dyn/cm2; 
- -  temperature To ~ 25 eV; 
- -  current density j0 = cHo/(4rL)  ~- S0 A/cm 2. 
In the calculations below, the thermal conductivity X was assumed to be equal to zero. 
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As in Sec. 1, we consider two-dimensional plasma flows in the plane (x, y) that  are symmetr ic  about the 
axes x = 0 and y = 0. In this case, just one component  of the vector potential A = (0, 0, q/) is different from 
zero. In view of the symmetry  of the problem, we consider only the first quadrant  0 ~ x ~ xm,  0 ~ y ~ Ym 
(in dimensionless variables). 

The boundary conditions on the lines x -- 0 and y = 0 are the natural  conditions of flow symmetry. On 
the external boundaries of the calculation region F, an electric field is specified in the form of the following 
dependence of �9 on t: 

I A l s in (w t ) ,  wt <<. 7r/2, ~( t )  A1, wt > ~'/2. (2.2) 
k 

Here A1 and w are dimensionless parameters that  characterize the magni tude and rate of increase in the 
vector potential. It is assumed that the myxine occupies the region x0 ~ x ~ Xl, y0 ~ y ~ yl- In this case 
the dimension of the myxine is 1/5-1/10 of the total  length of the calculation region in each direction. 

Inside the myxine volume, we solve the Poisson's equation 

4~'. 
= y , t ) .  (2.3) 

c 

The value of jz in the myxine is given by the "Ohm law" jz = a(E~ + E), where E is the e.m.f, characteristic. 
In the present calculations, it was assumed that  j~ -~- j0 -- const. The field inside the myxine is joined by a 
conventional procedure with the plasma field [Hn] = 0. The impenetrability condition un = 0 is imposed on 
the myxine surface. The symmetry conditions a f / a n  = 0 are specified for the remaining sought functions on 
the myxine surface. 

At the initial time t = 0, we find the vector-potential distribution by solving Eq. (2.3). In this case, 
j = j0 inside the myxine volume and j = 0 outside the myxine volume. The conditions on the boundaries of 
the calculation region for (2.3) at the initial t ime are formulated as follows: 

0 9  0 ~  
k~ = O for x = xm, Y = ym, COX--0 f o r x = 0 ,  COy -----0 f o r y = 0 .  

Then, the region is filled with a fully ionized plasma with n = no(x ,y )  and T = To(x ,y) .  In the present 
calculations, the initial distributions of the plasma density and temperature were constant: n0(x, y) = no and 
To(x, y) = To. On the outer boundaries x = xm and y = ym, the distribution of the potential k0 was specified 
according to (2.2). The myxine current was equal to j0 = const, and its direction coincided with the current 
direction on the outer boundary (the a regime) or was opposite to it (the ~ regime). 

Equations (2.1) were solved using a difference scheme with oriented differences, and the Poisson's 
equations (2.3) were solved by the method of successive overrelaxation with acceleration. Typical calculation 
variants contained 50 • 50 or 100 • 100 calculation cells, so that 10 to 20 calculation cells in each direction 
fell in the myxine region. To check the calculation accuracy, we verified the law of conservation of the total 
energy of the system, which was satisfied with accuracy up to several percent.  

In [12, 13], the following regimes of formation of quasistationary configurations are considered: the 
basic a regime, the basic ~ regime, and the a regime with varying currents in the myxines (the a#  regime). 
In the basic regimes, the myxine currents are considered constant, and they correspond to the "basic 
solutions" of the Grad-Shafranov equation described in [3]. These calculations were performed for myxines of 
various dimensions and various initial plasma parameters  and boundary conditions. The results obtained are 
qualitatively similar, and, hence, in the present paper,  we give only one example for each of the basic a and 

regimes, 
2.1. Basic a Regime. Figure 2a and b shows [for no = 1, To - 0.2, j0 - -80 ,  and ~ -- c2/(4~r~LVA) = 

10 -2] patterns of the magnetic field lines (the dashed curve corresponds to a value ko = 0) and pressure 
isolines, respectively, in the quasistationary regime. 

A characteristic feature of the configuration formed is that plasma contacts the myxine surface. This 
is natural  for the nearly zeroth conductivity of the myxine since the current  in it is considered constant. In 
addition, the plasma distribution is uniform at the  initial time. We note that  in the experiments of A. G. 
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Frank, the compressed plasma is also adjacent to the myxines [4]. Contact of the plasma with the myxines 
could apparently be eliminated if the plasma density at the initial time is set equal to zero over a rather wide 
region around the myxine and the plasma conductivity is assumed to be rather high. Furthermore, the myxine 
conductivity should also be rather high in order that a thin skin layer be formed in it. 

From the numerical calculation of [12, 13] it follows that the magnetobaric characteristic p(~) 
constructed on the basis of topograms for ~ and p is with high accuracy a linear spline similar to the 
one used in [3, 5] in determining the basic solution of the Grad-Shafranov equation. The linearity of p(kg) is 
obviously a result of the static character of the configuration at constant plasma conductivity. 

2.2 Basic t3 Regime. By definition, in the fl-regime the directions of the plasma and myxine currents 
are opposite. The calculation results for this regime (for no = 1, To = 0.2, j0 = 80, and ~ = 10 -2) are 
presented in Fig. 3 [magnetic-field lines (a) and plasma-pressure isolines (b)]. In this case too, transition to 
static configurations with a magnetobaric characteristic in the form of a linear spline is observed. Naturally, 
the/3 configuration calculated by the iterative method is similar to the configuration obtained from the static 
Grad-Shafranov equation [5]. Finally, we note that the main feature of the/3 configuration - -  separation of 
the plasma from the myxine - -  is also clearly manifested in experiments. 

Conclus ion.  In the present paper, we developed stationary and nonstationary models of a galathea 
gap of the "Belt" type. The results of numerical calculations using the nonstationary model show that the 
equilibrium (stationary) configurations of these gaps can be obtained by the iterative method. It is shown 
that the magnetobaric characteristics p(~) in the stationary "basic" a and /3 regimes at finite constant 
conductivity of the plasma are described by linear splines. The numerical calculations for the stationary and 
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nonstationary models are in good agreement. The results obtained in the paper are qualitatively consistent 
with the experiments of [4]. 

We are grateful to A. G. Frank and A. I. Morozov for assistance in the present investigation and fruitful 
discussions of the results obtained. 
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